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The areas of the brain that encode color categorically have not yet
been reliably identified. Here, we used functional MRI adapta-
tion to identify neuronal populations that represent color catego-
ries irrespective of metric differences in color. Two colors were
successively presented within a block of trials. The two colors were
either from the same or different categories (e.g., “blue 1 and blue
2” or “blue 1 and green 1”), and the size of the hue difference was
varied. Participants performed a target detection task unrelated
to the difference in color. In the middle frontal gyrus of both hemi-
spheres and to a lesser extent, the cerebellum, blood-oxygen
level-dependent response was greater for colors from different
categories relative to colors from the same category. Importantly,
activation in these regions was not modulated by the size of the
hue difference, suggesting that neurons in these regions represent
color categorically, regardless of metric color difference. Represen-
tational similarity analyses, which investigated the similarity of
the pattern of activity across local groups of voxels, identified other
regions of the brain (including the visual cortex), which responded
tometric but not categorical color differences. Therefore, categorical
and metric hue differences appear to be coded in qualitatively dif-
ferent ways and in different brain regions. These findings have
implications for the long-standing debate on the origin and nature
of color categories, and also further our understanding of how color
is processed by the brain.
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Although color is continuous, humans can group the millions
of discriminable colors into discrete categories, such as red,

green, blue, and yellow (1). The origin and nature of such color
categories has been extensively debated across the cognitive sci-
ences (1–12). Traditionally, debate has focused on whether color
categories are biologically constrained (2, 3), or whether they are
arbitrary linguistic constructs that arise out of culture and com-
munication (4). Alternative proposals include suggestions that
color categories are a cognitive response to inequalities in per-
ceptual color space (5), or that color categories are a property of
the reflective surfaces of the visual environment (6). Also debated
is the extent to which color categories affect how color is per-
ceived. Some have argued that color categories affect the cogni-
tive or attentional strategies of perceptual color judgments (7, 8),
or that color categories affect early stages of color processing
even when colors are not attended (9–12). However, others have
argued that noncategorical sensory models of color encoding are
sufficient to account for how color is perceived (13). The current
investigation aims to contribute to the long-standing multidisci-
plinary debate on the origin and nature of color categories by
identifying how color categories are represented in the brain.
Although there is some understanding of the areas of the brain

involved in color vision, there is lack of clarity on where color is
encoded categorically (14). It has been proposed (15)—but also
refuted (16)—that clusters of color-preferring cells (“globs”) in
macaque posterior inferior temporal (IT) cortex represent the
four “unique hues” (red, green, yellow, and blue) that all colors
can be described in terms of. Neurons have also been identified
in macaque IT that are more strongly excited during a color
categorization task (is the color reddish or greenish?) compared
with a color discrimination task (select the color that is the same

as a sample color) (17). However, although IT neurons were
more active when differentiating between red and green, their
activity also discriminated within those categories; therefore, it
was acknowledged that the neurons were not encoding color in
a categorical manner. Perhaps related to this finding, optical
imaging of macaque primary visual cortex has revealed a two-way
spatial clustering of neural responses according to whether the
L-M cone-contrast of a color is positive (e.g., reddish) or negative
(e.g., greenish) (18). Furthermore, it was found that this distinc-
tion in neural activity correlated with the two-way classification of
colors as “warm” or “cool,” which appears to serve as a fault line
in structure of the world’s color lexicons (19). These important
findings suggest a relationship between encoding of color at the
visual cortex and categorization of color in language. However,
the study does not suggest that encoding of color at the visual
cortex is related to finer levels of color categorization that are
subsumed within the relatively broad warm-cool categorical dis-
tinction (e.g., blue vs. green).
In humans, functional MRI (fMRI) studies have shown that

the left posterior temporoparietal regions involved in color nam-
ing are activated when explicit identity judgments about color are
made (e.g., are colors the same or different?) (20, 21), and that
there is stronger activation in language networks when participants
search for a colored target among different- rather than same-
category colored distractors (22). In fact, the latter study also
found “category effects” of greater activation for different- rather
than same-category color search in 28 regions, including prefrontal
regions and areas of the visual cortex (V2/V3). However, caution
is required in interpreting these effects as categorical. Although
such effects may appear to be related to color categories, in-
equalities in the color metric used to equate same- and different-
category colors could well account for the effects (13, 23; this also
applies to ref. 24). In addition, because search was faster for
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different- rather than same-category target-distractor color pairs,
categorical differences in blood-oxygen level-dependent (BOLD)
activation are confounded by task difficulty: it may simply be the
case that the identified regions are modulated by the difficulty of
search rather than the categorical relationship of colored targets
and distractors.
Three lines of evidence have suggested that color categories

may influence processing at the level of early cortical visual re-
gions. Electrophysiological studies have claimed that color cat-
egories modulate components of visually evoked event-related
potentials that potentially arise from the visual cortex (10–12).
However, it has been argued that inequalities in color metric or
lack of clarity over the identity and origin of the event-related
potential component complicate the interpretation of these find-
ings (8). Using a very different approach, a behavioral-anatomical
study found that the learning of novel color names was correlated
with gray matter increases in V2/V3 (25). Although these results
are encouraging, such increases in gray matter could be a result
of general exposure and discrimination of the colors during the
training period, rather than the specific categorical effect of color
name learning. An fMRI study using an encoding model approach
to describe the representation of color on the basis of multiviariate
patterns of brain responses showed that the hue tuning of areas
VO1 and V4 undergoes categorical clustering, but only during
color naming (26). This study suggests that the representation of
color in these regions is flexible and responsive to top-down mod-
ulation contingent upon task demands. Nevertheless, it does not
suggest that a categorical code for color is present at the visual
cortex that is independent of explicit color naming, and the source
of the top-down modulation remains unclear.
To summarize, although there have been attempts to identify

the regions of the brain broadly related to categorical processing
of color, no prior study has unequivocally identified which re-
gions of the cortex encode color categorically in the absence of
explicit color naming. The present investigation aims to reveal
categorical encoding of color in the brain using the fMRI ad-
aptation method. This method has been previously used to
identify neuronal populations that encode other types of cate-
gories (e.g., ref. 27). The basic assumption of the method is that
“neural adaptation reduces the BOLD response when successive

stimuli activate the same subpopulation of neurons within a
voxel, but not if they activate different subpopulations of neu-
rons” (28). If a subpopulation of neurons encodes stimuli cate-
gorically, there should be a greater reduction in BOLD when
successive stimuli are from the same category than when they are
from different categories. Even if neural adaptation is not the
precise mechanism of the reduction in BOLD response (see ref. 29
for a review of the different models of adaptation), the method
remains a useful tool to study categorical representations.
We used a blocked design where participants viewed blocks of

color stimulation during which two colors were presented in
a successive fashion over 12 trials (Fig. 1 A and B). Participants
were required to attend to colored stimuli, yet were not required
to make explicit judgments about the identity or similarity of
colors; therefore, category effects could not be confounded by
the difficulty of any judgments made. To keep participants fo-
cused on viewing the colors, they were required to press a key
when a target was present (a lighter patch in the center of one
stimulus on a small percentage of the blocks). There were four
colored stimuli, which were expected to be named in a sub-
sequent naming test as one green and three blues. Colors were
paired within a block, and across blocks each color was paired
with every other color, including itself. On the basis of the
intended color names (which were assessed by asking partic-
ipants to name colors after the main experimental task), this gave
six conditions where stimuli in a block were either same- or
different-category, and where the difference in hue (hue is a
perceptual dimension corresponding to dominant wavelength)
between stimuli in a block was either absent (identical condition)
or “small,” “medium,” or “large” (Fig. 1D). Therefore, the de-
sign included both a manipulation of the categorical relationship
of colors in a block, and a metric manipulation of the size of the
hue difference between colors in a block.
fMRI analyses aimed to identify regions of the brain where

BOLD activation was greater for different- rather than same-
category color blocks, and regions that had greater BOLD ac-
tivity the larger the hue difference. Importantly, if neurons en-
code color categorically, then those neurons should respond
to a categorical change in color (e.g., blue to green), but not to
the size of the hue difference (e.g., small vs. medium color

G1         B1          B2          B3

Fixation cross     Color stimulation    Inter-block interval
600 ms 9600 ms                    9000 ms

A B

C D

Same-
category

Different-
category

Identical Small Medium Large
G1-G1
B1-B1
B2-B2
B3-B3

B1-B2
B2-B3

G1-B1

B1-B3 G1-B3

G1-B2

Fig. 1. fMRI adaptation stimuli and design. (A) Flow and time course of blocked design. During color stimulation a colored square was presented centrally on
gray background (400 ms), 12 times separated by a gray background for 400 ms. (B) Two colors were presented six times each within a color stimulation block.
On 12.5% blocks, one of the colored stimuli had a target that was a lighter square presented in the center of the colored stimulus (see right side of B).
Participants were required to press a key when the target was detected, and blocks with targets were excluded from the analysis. (C) Print-rendered versions
of the colors used. The dashed line indicates the blue-green lexical distinction made by the majority of the participants (n = 17): one stimulus was named
green (G1) and three were named blue (B1/B2/B3). (D) Table of conditions. Across runs, all colors were paired with every other color, including itself, giving
blocks where colors were either the same- or different-category, and where the size of the hue difference was absent (identical), small, medium, or large. The
red box indicates the 2 × 2 design used in one analysis which aimed to identify regions of the brain that respond to categorical but not metric changes in color.
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difference). Note that differences in discriminability of same-
and different-category colors because of potential inequalities in
color metric cannot account for a category effect in a region of
the brain if neurons in that region do not respond to larger
differences in discriminability resulting from explicit manipula-
tion of the size of the hue difference. Alongside the adaptation
analyses, which look at differences in activation within single
voxels, we also performed analyses looking at the pattern of
activation within a group of voxels [representational similarity
analysis, RSA (30)]. The combination of adaptation and RSA
approaches provided greater leverage to understand the neural
basis of color categorization.
Broadly speaking, if color categories are represented at a fun-

damental sensory or perceptual level, then we predict categorical
encoding of color in regions of the visual cortex. If color cate-
gories are only represented in language, we predict that only left
posterior temporoparietal regions encode color categorically. If
color categories arise as a result of top-down attentional pro-
cesses, we would predict the frontal brain regions to be implicated.
Of course, it is possible that color categories are represented at
multiple stages of processing and that there are interactions be-
tween these brain regions.

Results
Preliminary Analyses. Analysis of the accuracy of target detection
during the main experimental task confirmed that participants
were attending to the stimuli throughout the experiment (7.8 of 8
targets detected on average; the poorest performing participant
detected 5 of 8). Analysis of color naming verified that the ma-
jority of the participants (17 of 21) named the color stimuli as
intended (as comprising one green and three blue stimuli) (Fig.
1C). The remaining four participants named the color stimuli on
average as comprising two green and two blue colors, and data
from these participants were not included in the following
analyses of the other 17 participants, but were analyzed as
a separate group in additional analyses (see Additional Analysis
of Four Extra Participants, below).

Imaging Results. In all imaging analyses, we used a threshold of
P < 0.001 uncorrected for multiple comparisons and had an extent
threshold of 20 or more contiguous voxels. The first analysis
compared all experimental blocks with an implicit baseline
[unmodeled time, including fixation cross, interblock-interval
(IBI), and rest period]. This analysis revealed no suprathreshold
voxels, possibly because of the low demands of the task, the fact
that an isoluminant gray background was present throughout the
experiment, and that the baseline comprised an entirely un-
constrained “rest” during which participants were free to engage
in task-independent thought.
To independently investigate brain regions responding to changes

in color category and to size of hue difference, we performed a 2 ×
2 ANOVA on the fMRI data from the experimental blocks

containing color pairs of small and medium hue difference (first
factor, color category; second factor, size of hue difference) (Fig.
1D). Blocks where colors were identical or where there was
a large hue difference were not included in this analysis, as there
are no different-category pairs in the former blocks, nor any
same-category pairs in the latter blocks (Fig. 1D).
There was a main effect of color category [blocks (G1-B1) and

(G1-B2) > (B1-B2), (B2-B3) and (B1-B3)] in three brain regions:
the left and right middle frontal gyrus (MFG) and the left cer-
ebellum (Fig. 2 and Table 1). The sizes of both the left and right
MFG clusters of activations are significant at the level of whole-
brain family-wise error correction. These regions showed an in-
crease in BOLD response for the different-category blocks
compared with the same-category blocks, consistent with an
fMRI adaptation effect, which predicts habituation of the BOLD
response for repeated presentation of stimuli from the same
color category.
Critically, there was no main effect of size of hue difference in

any of the regions identified in the color category analysis, even
at greatly reduced thresholds (P < 0.01, uncorrected for multiple
comparisons). In fact, no regions showed a main effect of size of
hue difference and no regions showed a significant interaction
between color category and size of hue difference. Because it is
risky to conclude no difference from failure to find a significant
difference when null-hypothesis significance testing, we also
analyzed the main effect of size of hue difference on MFG ac-
tivation using a Bayesian model selection approach (31). This
approach uses simple transformations of the sums of squares
from the ANOVAs to generate Baysian information criterion
probabilities (pBIC) of the null and alternative hypotheses given
the data. For the average activity across the left MFG, the Bayes
factor in favor of the null hypothesis over the main effect of size
of hue difference was 3.26: pBIC(H1jD) = 0.235 and pBIC
(H0jD) = 0.765. For the average activity across the right MFG,
the Bayes factor in favor of the null hypothesis over the main
effect of size of hue difference was 3.98: pBIC(H1jD) = 0.201
and pBIC(H0jD) = 0.799. These analyses therefore suggest that
there is no effect of size of hue difference in both the left and
right MFG. In each case, the probability of the alternative hy-
pothesis is much smaller than that required for even a weak ef-
fect [where pBIC(H1jD) = 0.5–0.75 would indicate a weak effect
(32, 33)], and a Bayes factor in support of the null hypothesis
over 3 indicates substantial support for the null (32).
It is possible that some regions of the brain differentiated

between the experimental blocks in terms of the patterns of

Table 1. Main effect of color category

Brain region
Brodmann

area
Cluster
size

MNI coordinates
z-

scorex y z

Left MFG 9 /46 61* −36 36 42 4.1
Right MFG 9 48* 33 33 45 3.8

33 42 39 3.7
Left

cerebellum
None 33 −15 −81 −51 4.6

Activations within the whole brain (statistical threshold P < 0.001 uncor-
rected, cluster size = 20 voxels).
*Cluster significant at P < 0.05, family-wise error-corrected for multiple com-
parisons across the whole brain.
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Fig. 2. Results of univariate analysis of the main effect of color category. (A)
Main effect of color category in left and right MFG and cerebellum projected
on to the group averaged structural scan (P < 0.001 uncorrected for multiple
comparisons, extent threshold = 20 contiguous voxels). (B) The same contrast
shown centered on the peak voxel in the left MFG. The colorbar represents
the value of the t-statistic. (C) Mean percentage signal change for the four
experimental block types compared with baseline shown for the peak voxel
in the left MFG (error bars show SEMs). The baseline is an unconstrained
“rest” period, and therefore it is the differences between experimental
conditions that are critical rather than the absolute change relative to
baseline.
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activity across groups of voxels rather than in an overall change
in activity. To investigate this theory, we performed three RSA
(Supporting Information). The first RSA investigated whether any
voxels exhibited a consistent pattern of activity during the ex-
perimental blocks versus the IBIs (Fig. S1A). The analysis
revealed widespread regions of the visual cortex, which suggests
these regions are representing the task stimuli despite not
showing an overall increase in activity while performing the task
(Fig. 3 A and B, Fig. S2 A and B, and Table S1).
The second analysis investigated whether the patterns of ac-

tivity correlated more strongly between experimental blocks
containing color pairs from the same category (“blue” blocks
correlated with other “blue” blocks) versus from different cate-
gories (“blue” blocks correlated with “blue and green” blocks),
while controlling for differences in the size of hue difference
(Fig. S1B). No regions showed this effect. In the third RSA
analysis we investigated whether the patterns of activity corre-
lated more strongly between experimental blocks containing
color pairs separated by a small hue difference versus a medium
hue difference, while controlling for differences in color category
(Fig. S1C). Three regions showed this effect (Fig. 3 C and D, Fig.
S2 C and D, and Table S1). One of these regions, comprising 56
voxels, was in the visual cortex, and 14 of these voxels overlapped
with the large visual cortical region that was identified in the first
RSA analysis of the experimental trials versus IBIs. The regions
identified in this third analysis are sensitive to the size of the hue
difference, not in terms of an overall increase in activity, but in
the pattern of activity across groups of voxels.

Additional Analysis of Four Extra Participants. It is possible that the
MFG is responding to stimulus characteristics that might coincide
with the location of the blue-green category boundary of our 17
participants. For example, one anonymous reviewer highlighted
that the blue-green category boundary for the 17 participants
coincides with whether the stimuli have an S-cone value above or
below equal energy white (G1 is below and B1–B3 are above the
S-cone value for equal energy white, and there is little variation
in L-M cone values for the blue-green distinction). To account
for our findings, the MFG would need to respond in a categorical
manner to S-cone response, being modulated only by whether
colors were above or below equal energy white and not being
modulated by the size of the S-cone difference. We are not aware
of any prior evidence that the S-cone signal can be extracted and
treated in a categorical way based on the color’s relationship to
equal energy white.
We have some data that allow us to test this S-cone hypothesis,

because 4 of the 21 participants named the colors differently to
the rest of the sample. This subgroup of participants on average
named the colors as two greens and two blues, and therefore
perceived the blue-green category boundary to lie between B1
and B2. If the MFG is responding to the categorical status of
colors rather than other stimulus characteristics (such as S-cone
response), we would still predict a category effect within the
MFG for this subgroup if the categorical status of color pairs is
defined by their own color naming. Importantly, the different-
and same-category blocks are different for the subgroup (where
B1-B2 blocks are different-category and G1-B1 blocks are same-
category) and the main group (where G1-B1 blocks are different-
category and B1-B2 blocks are same-category). This color cate-
gorical interpretation of the effect was supported by mixed
ANOVAs on the parameter estimates for the average response
of all voxels in the left and right MFG clusters. Critically, there
was no significant interaction between category (different vs.
same) and group (main group and subgroup): left MFG: effect of
category, F(1, 19) = 12.1, P < 0.01, effect of group, F(1, 19) = 0.2,
P = 0.69, interaction, F(1, 19) = 0.6, P = 0.43; right MFG: effect
of category, F(1, 19) = 7.2, P < 0.02, effect of group, F(1, 19) =
0.2, P = 0.70, interaction, F(1, 19) = 0.8, P = 0.38. Bayesian
analysis (31) confirmed support for the null hypothesis over an
interaction between category and group for the MFG on the left
[Bayes factor in favor of null hypothesis = 3.19, p(H0jD) = 0.761,
p(H1jD) = 0.239] and the right [Bayes Factor in favor of null
hypothesis = 2.97, p(H0jD) = 0.748, p(H1jD) = 0.252]. This
analysis therefore indicates that there is a category effect in the
MFG when the categorical status of colors is defined according
to each participant’s color naming, irrespective of the location of
the blue-green category boundary. In other words, the category
effect at MFG is found for other patterns of color naming as
well, and is therefore not restricted to certain stimuli.
In addition, if the effects in the main group analysis are be-

cause of perceived categorical membership and not other char-
acteristics of the stimuli, then the subgroup of the four participants
who name the colors differently to the main group will show a
different pattern of BOLD response to blocks that are perceived
as different- vs. same-category by the main group. We tested this
by carrying out mixed ANOVAs on the parameter estimates for
the average response of all voxels in the left and right MFG clus-
ters, but this time defining blocks as different- or same-category
according to the naming of the main group. Critically, in this
analysis there was now a significant interaction between category
(different- vs. same-category for the main group) and group
(main group and subgroup) in both clusters: left MFG: effect of
category, F(1, 19) = 2.5, P = 0.13, effect of group, F(1, 19) = 0.1,
P = 0.79, interaction, F(1, 19) = 34.2, P < 0.01; right MFG: effect
of category, F(1, 19) = 6.3, P < 0.05, effect of group, F(1, 19) =
0.5, P = 0.48, interaction, F(1, 19) = 26.3, P < 0.01. This analysis
therefore indicates that the effect at MFG is for the blocks that
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Fig. 3. RSA analyses of experimental blocks and color metric differences.
Whole-brain “searchlight” analyses were carried out where the similarity in
the pattern BOLD signal across 257 voxels in a moving sphere were com-
pared against different phases of the experiment. The voxel at the center of
the sphere was assigned the t-statistic for the comparison. (A) Brain regions
where the similarity in patterns of BOLD signal was higher during experi-
mental blocks than during IBIs, centered on the peak voxel showing the
effect (P < 0.001 uncorrected). The colorbar represents the value of the
t-statistic. (B) Bar graph showing the mean correlations between the ex-
perimental blocks and the interbloc intervals for the peak voxel identified in
A, averaged across all participants (error bars show SEMs). Note that this is
for illustrative purposes and does not represent an independent analysis. (C)
Brain regions where the similarity in patterns of activations was greater
during blocks with small rather than medium hue difference (color metric
effect), centered on the peak voxel showing the effect (P < 0.001 un-
corrected). The colored bar represents the value of the t-statistic. (D) Bar
graph showing the mean correlations between blocks with small hue dif-
ference versus small and medium hue difference (error bars show SEMs).
Note that this is for illustrative purposes and does not represent an in-
dependent analysis.
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are perceived as different- vs. same-category by the main group,
and is contingent on the perceived color categories of the colors
in those blocks.
In sum, these post hoc analyses lend support to the notion that

the regions of MFG identified in the main analysis are truly
responding to perceived color categorical membership of the
colors and the effect is not driven by other characteristics of the
stimuli that may coincide with the location of the main group’s
blue-green color category boundary.

Discussion
We used fMRI to identify regions of the brain that indepen-
dently code for differences in color category and the size of the
hue difference. The MFG in both hemispheres showed stronger
activation for different- vs. same-category color differences but
was invariant to the size of the hue difference. No color categor-
ical effects were observed in any visual cortical regions. However,
there was a region of the visual cortex that was sensitive to the
size of the hue difference, as revealed by the pattern of activity
across voxels rather than overall changes in activity; the more
similar the size of the hue difference between colors, the more
similar the pattern of activity. An additional analysis investigated
the similarity of patterns of firing for same- vs. different-category
colors, while controlling for the size of the hue difference, but did
not find any regions showing this effect. Therefore, categorical and
metric hue differences appear to be coded in qualitatively differ-
ent ways and in different brain regions. We discuss these findings
in more detail below.
In the MFG and to a lesser extent, the cerebellum, BOLD

activation was stronger for blue-green color differences than
blue-blue, yet activation was not modulated by whether the hue
difference was small or medium in size. The lack of a metric
effect in these regions indicates that here, color is encoded in
a purely categorical manner. Importantly, it also indicates that
the category effect cannot be because of potential differences in
discriminability of same- and different-category colors that might
result from inequalities in the color metric. Even if such in-
equalities in color metric exist, they could not account for the
category effect in the MFG, as larger differences in discrimina-
bility resulting from explicit manipulation of hue difference do
not modulate activity in these regions. Therefore, although
“category” effects of prior behavioral and neuroimaging studies
might be a result of unequal same- and different-category hue
difference rather than the categorical relationship between col-
ors, the present study identifies an effect that is unequivocally
categorical.
The most extensive regions to show category effects were the

left and right MFG. We interpret the effect in this region as
possibly reflecting a change detection process (explicit or im-
plicit), operating at the level of conceptual categories. This in-
terpretation may be underpinned by habituation of the firing of
category-selective neurons during blocks, the common explana-
tion for BOLD changes when using fMRI adaptation paradigms.
Whatever their underlying neuronal origin, the category effects
in the MFG arise even though participants are not required to
make judgments about the identity of the colors, nor any other
aspect of the hue difference. Note, no judgment of the hue dif-
ference between color pairs was required to detect the target,
which was of a different lightness, and target blocks were not
included in the analyses. Thus, categorical processing in the
MFG appears to be automatic rather than effortful.
Additional support for the proposal that color category effects

in the MFG reflect categorization at a conceptual level is that the
region has been implicated in categorical processing in other
domains, such as phonetic categorization (34), categorization of
dot patterns (35), categorical spatial memory (36), semantic
categories (37, 38), categorical uncertainty (39), and taxonomic
categorization (40). Learned-object categories have also been

found to be represented in a region homologous to the MFG in
macaques (41). Taken together, the evidence supports a domain-
general role for this region in categorization (see also ref. 34).
A categorical effect was also found in the cerebellum. The

cerebellum has been implicated in a number of cognitive and
affective processes, including previous color category studies
(e.g., see figures 3A and 4A in ref. 21, and ref. 22). However, it is
not clear whether these effects are simply because of its high
density of connections to cortical regions where higher-order
processing takes place, because the cerebellum is primarily as-
sociated with motor coordination (42, but see also ref. 43).
The findings of the present study have implications for the

broad multidisciplinary debate on the origin and nature of color
categories. Much of this debate has centered on whether color
categories are biologically rooted in color perception (2) and the
role of language in color categorical effects (4). The present
study found no evidence of categorical encoding of color in
classic visual and language regions of the brain. Although there is
evidence that the very broad “warm-cool” category contrast is
represented in the visual cortex (18), there has been no un-
equivocal evidence for encoding of finer categorical distinctions
in the visual cortex that cannot be accounted for by top-down
modulation resulting from explicit color naming (26). Further-
more, although language networks in the left temporal lobe in-
volved in color naming are activated by explicit identity judgments
about color (e.g., are the colors same or different?) (20), we find
no evidence that these regions are involved when explicit judgments
of hue difference are not required.
RSA investigated the correlation, or similarity, in the pattern

of activity across local groups of voxels during different periods
of the experiment. We found extensive regions of the visual
cortex that showed higher correlations between the patterns of
activities across voxels during experimental blocks than during
IBIs, despite the fact that the overall activity was not significantly
different during these periods. In a novel application of the RSA
method, we investigated regions where pattern similarity was
greater for small hue differences compared with larger differ-
ences. This process identified two right hemisphere regions: an
area of the visual cortex, as well as an area involving the putamen
and white matter of the right hemisphere. Activations in white
matter, which has little energy requirements, are difficult to in-
terpret. However, the identification of a visual cortical region,
which partially overlaps the task-related activation in the first
RSA analysis, is likely to be important. Combined with the lack
of color category effects in the visual cortex in both the con-
ventional univariate and the RSA analyses, our data suggest that
the visual cortex is specialized for detecting metric differences in
color. The fact that a metric effect was only detected using the
RSA analysis suggests that metric differences may be coded for
by shifting the weights in the firing patterns of local populations
of neurons (detectable in the pattern of activity across voxels)
rather than by overall increases or decreases in firing (which
would result in a change in the level of activation).
The main contribution of the present study is to identify the brain

regions that encode color in a categorical and not a metric manner.
We have shown that color is encoded categorically, even when hue
differences are irrelevant to an ongoing task. The only cortical
regions to show the categorical effect were in the dorsolateral pre-
frontal cortex in both hemispheres, suggesting that automatic cate-
gorical encoding of color occurs at a conceptual stage of processing.
Color categories may therefore not originate from computations at
perceptual stages of color vision, but may rather arise from domain-
general cognitive categorization processes.

Methods
Participants. Twenty-one participants (11 female, mean age 22.38 y, SD age =
2.18) gave written consent and were paid for participating, as approved by
the Brighton and Sussex Medical School Research Ethics and Governance
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Committee and the European Research Council Executive Agency Ethics
Review Board. All were right-handed with normal or corrected-to-normal
vision and reported to be in good health with no history of neurological
disease. All participants had normal color vision as assessed by the Ishihara
color plates (44).

Stimuli. Four colored stimuli from the blue-green region of CIELUV color space
varied in Commission on Illumination (CIE) hue, with the size of the hue angle
difference equated between adjacent stimuli (26.37°); CIE chroma (93.06)
and lightness (L* =100) were kept constant. Stimuli were projected onto
a screen in the MRI scanner from a calibrated video projector and the
chromaticity coordinates of the screen-rendered colors were verified with
a Minolta CS-100 colorimeter measuring from outside of the MRI bore via
a system of mirrors. The CIE (1931) x, y chromaticity coordinates for the
stimuli were: G1, x = 0.258, y = 0.400; B1, x = 0.229, y = 0.339; B2, x = 0.225,
y = 0.287; B3, x = 0.241, y = 0.252. All stimuli had a luminance of Y = 117.26
cd/m2, including the background gray (x = 0.33, y = 0.33).

Details of Procedure and Design. Participants performed 64 blocks; 58 were
experimental blocks displaying six different types of color pairings: identical
(for example, G1-G1), same-category small (B1-B2 or B2-B3), same-category
medium (B1-B3), different-category small (G1-B1), different-category me-
dium (G1-B2), and different-category large (G1-B3) (Fig. 1). There were
also eight target-present blocks that occurred in all stimulus pairings. All
blocks progressed in a pseudorandom order over the course of two runs
separated by a short rest interval during which functional images were
continuously acquired.

For each block, a black central fixation cross (1.3 cm2) was presented for
0.6 s, followed by a 9.6-s period of color stimulation and then an IBI of 9 s.
During nontarget blocks, 12 color squares (5 cm2) were presented on a gray
background centrally for 0.4 s each separated by the gray background alone
for 0.4 s. The 12 color squares were six pseudorandomized presentations of
two of the color stimuli (for example, G1 and B2), or 12 presentations of one

of the color stimuli during identical color blocks. This design was similar for
target blocks (12.5% of the blocks): two stimuli were alternated six times
each except that, on one of the presentations, a lightly colored area inside
a stimulus was visible (Y = 90 cd/m2). Participants were instructed to respond
to these targets with a button press.

After the main task, participants carried out a naming task to confirm the
intended category membership of stimuli. Each stimulus was displayed in
isolation on the same gray background and of the same size as the experi-
mental task, and participants were asked to name the color as either “Blue”
or “Green.” This naming procedure was randomized and repeated three
times for each stimulus.

Acquisition and Analysis of fMRI Time Series. Functional images were acquired
on a Siemens Avanto 1.5 Tesla MRI scanner and analyzed by using SPM8,
including standard preprocessing procedures (Supporting Information).
fMRI time series were modeled by a general linear model including sepa-
rate boxcar regressors for the experimental blocks (all pairings of color
squares, eight in total). Target blocks and feedback periods were also
modeled as separate boxcar regressors of “no interest.” All regressors were
convolved with the SPM hemodynamic response function. Data were high-
pass filtered (cutoff period 128 s). Details of the first level (individual par-
ticipant) univariate, and RSA analyses are given in the Supporting In-
formation. Linear contrasts of coefficients for each participant were entered
into second level random-effects analyses and considered statistically sig-
nificant if they exceeded a threshold of P < 0.001 uncorrected for multiple
comparisons and had an extent threshold of 20 or more contiguous voxels.
Coordinates of brain regions are reported in Montreal Neurological Institute
(MNI) space.
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